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Abstract
.';\6746’

We consider, in the framework of general relativity, large
masses consisting of identical baryons (whose mass is taken to
be that of the neutron). Four assumptions are made as to their
interactions, leading to four equations of state, and for each
the masses and radii of a number of configurations are calcu-

lated, for various values of the central number density. The

relation of the mass to a parameter tgj (= 4sinh™? (—ﬁ—-(Bn’n )1/9,
M C o

where ng is the central number density) for the four equations of

state are strikingly similar, a%/>276§*u/



I. Introduction

Several discussions have been given (e.g., Oppenheimer and
Volkoff 1939; cCameron 1959 Saakyan 1963: Ambartsumyan and Saakyan
1961; Ambartsumyan and Saakyan 1960) of the proklem of the
structure of stellar masses composed of elementary

particles at ultra high densities (R nuclear density). Such stars
are called neutron stars (and are sometimes called hyperon stars).
It seems at least possible that such stars exist in nature, pre-
sumably as the relics of supernovae. Recent orbital X-ray experi-
ments indicate that such stars might even exist.

In this connection it seemed worthwhile to consider whether
certain simple alternatives for the equation of state of the parti-
cles could be justified on theoretical grounds, and if so, whether
the results would have any similarity to those for a perfect Fermi
gas with no interaction.

The first alternative is (potential energy density) ~
(number density)qb. This originated in a hypothesis of Zel'dovich(1959)
of a common ferion core "inside" all baryons, which then leads to
a strong repulsion (potential « %h) when the separation is small
and the relative angular momentum is zero. The second was
(potential energy density) « (number density)®. This originated

in a theory of Zel'dovichﬁ96ﬂin which baryons interact via a vector

meson with a mass.

ITX. The Egquations of Hydrostatic Egquilibrium

It has been shown that the relativistic equations of hydrostatic




equilibrium, are

| Mh
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Here M, is the (proper) mass inside a sphere of radius r; P the

(1)

pressure; ¢ the (proper) energy density, including the rest energy:
¢ the velocity of light, G Newton's constant of gravitation; and

r the distance from the center of the (isotropic) sphere. The
equation of state is determined from the microscopic properties

of the medium. 1In the non-relativistic limit o 4 pc® and P << pc?,
r >>~§? , then Egqns{1l) reduce to the familiar non-relativistic

equations of hydrostatic equilibrium. We now introduce the units

(from Oppenheimer and Volkoff (1939)):

-~

0 mplT

(In these units the
unit of mass is 9.29 M@, the unit of length 13.69 km., and the
1
unit of energy density is (g)x(rest energy of a baryon)/(volume of

a sphere of radius equal to Compton wavelength of baryon). We take



m, as the neutron mass throughout.) Egns.(l) become then the egns.

of Oppenheimer and Volkoff(1939):

du .
Z;' = 4W€:E

j-f = -‘fm(j—;)-' /P—+Zi/n (P+ w/(nn?)

(4)

with initial conditions

u=0, t= to' at r =0 (5)
corresponding to M, = 0, P = Pq in the nonrelativistic case. Solu-
Oppenheimer and Volkoff (1939)
tions with u <« 0 at the center cannot occur; see K’ r is

the distance from the center, u a parameter which at the boundary
takes on the value of the observable mass; and t is related to

the (proper) particle density by

m = (3rr’)-l(#/w,3c).aws(l‘/4) (6)

The representation of n was first used in stellar calculations b

. . . sChan rgse%har
mp is the rest mass of one of the (identical) fermions composing ’

the star. . and P are energy density and pressure, known functions

of t*¥, We write

€= 6t € P= PT*PV (7)

* These known functions taken togiher constitute the equation
of state.
** We take the mass of the (identical) fermions as being equal

to the neutron mass my.




where €n is the kinetic energy density including rest energy density
and e, the potential energy density, and similarly for P.

The units are those of Oppenheimer and Volkoff (1939).

III. Ruations of State

In all cases

& = = (uakt -1) (&

E’ - T;?(Mt "X“;"Lé t+ 3t) (9)
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and Pq are

The expressions$ for €qp / the same as that given by Landau
and Lifshitz1958)as one sees from Egn.(2) . It is not that given
by Chandrasekhar(1957) since the rest energy density is included,

as it must be; at nuclear densities omission of it would make
X
the parametric form of the equation of state inaccurate:(cfSaakyan 1964)

a. Oppenheimer and Volkhoff (1939); |
ey = Py =0 (10)

This is simply the case of neutrons without interactions.

b. Cameron( 1959)as modified by Saakyan (1963)}

*The non-relativistic limit, as one sees by expanding each
expression in powers of t, is

PT = g(eT - Mbcl/n/)
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This is derived from a nuclear potential given by Skyrme(1959)
which is based on the many-body theory of nuclear matter. A
three body effective potential is constructed from which the
potential energy density is derived. The predictions of the po-
tential agree well with the data from scattering experiments.
(1959)

c. Zel'dovich discussed the hypothesis that the nuclear
repulsion ("hard core") is due to a common fermion "inside" all
baryons. This led to the conclusion that for different or iden-

tical baryons in S states there should appear a strong repulsion

2
at small distnaces with a potential ~ t /(2/‘ gz) (y the mass,

R the separation).

We write for the two-body potential
2 | )
Vin) = e 7(b-2) (12)

n is the step function and b is a number like the range. Assuming

n1/3 > p L we get for the potential energy of one particle

”

#2
E,, =2r 2 im (13)
P /B

We have not included the restriction to S states. In an attempt




to do so, we say the average wave number, kAV' satisfies

/'éhv K = « < | (14)

We know that the Fermi wave number satisfies

J

- = p< | (15)
P
Then
4 o (71
- — (16)
or

-\/ \ N
/": (&rl) - N < M (17)
which contradicts our previous assumption. We know, however,
that this calculation will give the correct dependence of e, on
n and may hope that the coefficient will not be too far off. Com-

bining Egns.(17) and (13) we get

/ «
(fr/B) ’ }7‘ /’b (18)

for the energy of one particle.
Recalling é; = mLy, we obtain, in our units, just

¢
r: 2 7

(19)

: yids J £
8’ = W > t‘) (W“—XTZ"‘) (20)
4



to get
P o 37 -(52‘
V 27"_2 p 4 (21)
(1961)
d. Zel'dovich‘also considered the question of the most

rigid equation of state compatible with the theory of relativity.
He showed that baryons interacting via a vector field mediated by

massive quanta resulted in (assuming n_l/3 <d)
W

EVJ' = Zraz/nz/ff (22)

m = ﬁu is the mass of the meson and g is the baryonic charge of
the baryons. (We take c = 1l.) Again using 6&’ "/ILLL,;,and Egn.(20),

and defining

y - _8/%

(m/mg)* (23)

we get (in our units) just
AYAY
éV = ]DV > — Q/M —_ (24)

Zel'dovich also assumed, and it is material to his argument, that

3
Mg
/ < 7 < —_— (25)
m
He has taken, too, ET. ‘—'Aloil, but he states clearly that this
is an approximation; for exactness we must use, and do use, Eqn. (8) .

Note that for this equation of state the speed of sound is

equal to that of light.
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IV. Relativistic Restrictions on the Equation of State

The equation of state must always
satisfy covariance requirements. In particular, for very large
n, P« n®, with s > 2, is not permitted; otherwise Veound > ©-
Within this framework it is arguable that the equations given in
c) and d) above are quite simple and have some justification from
elementary particle theory. Their simplicity, and the radical
differences in the dependence of P on n between them, make the

unusually similar results for a), c), and d) (see Zel'dovich 1961)

interesting.

V. Results

a. The Egns.(4) were integrated numerically for 15 - 20
values of t,, for each equation of state, on a 7094 computer. The
initial conditions (Eqns.(5)) define the starting values, except
in the case of infinite central density (see below); the integra-
tion is stopped when t = 1073 t,. The values of u and r at this

point are M and R.

Note that we take = 1 and y = 3 respectively, and that no

™R

values of t, which would make P(ty) > e(to) are used in the second
equation of state.

The results are given in Fig. 1. and in the Table. The last
value is also that for infinite density, except for the second
equation of state, in which it is the last solution for which
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b. Infinite density solutions. It is possible, as Oppen-
heimer and Volkoff showed, to integrate the equations even if the

central density is infinite. We obtain in the several cases the

solutions:

Lox _ 3 L _ 77

i) ;l: = /‘;j > e 3 (26)
ii) ——

(See above; P(to) > e(to) is not permitted)
R AL
iii) v~ 49 — ity p (27)
( 4 St/2
iv) ?- = —l- y =3 T — )/e (28)
h 4 7 Ir

These are taken in all cases as being accurate out to values of
r such that t = 30, and the integration is done numerically from

that point.

VI. Discussion

The general character of the M vs. t, curves, Fig. 1, is the
same for the first, third, and fourth equations of state. We
have a gradual rise to an absolute maximum around to = 2.5 - 3,
a decline to a relative minimum between 5.5 and 6.0, a rise to a
relative maximum between 7.5 and 11, and a decline to the infinite
density solution value, which is attained (to three significant

figures) between 10 and 20.
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The behavior of R as a function of to for each equation of
state is quite similar to the curves la and 2a of Figure 2 of
the paper by Arbartsumyan and Saakyan (1961).

We see that, except for the second equation of state (which
for large t is unphysical), the M vs. t, curves are quite similar.
The features present in the solution curve for the simplest possi-
ble case (Oppenheimer and Volkoff) are present in the others also.
In particular, there is an absolute maximum and a second relative
maximum. One might think that this would indicate the presence of
a second stability region from the first minimum to the second
maximum: wherever the slope of the M versus tj curve is positive
the configuration should be stable. However, Misner and Zapolsky
(to be published), following an earlier work by Chandrasekhar (1964 a)
have shown that the equilibrium, for polytropes, is unstable in
this range of values of the density. This result was also obtained
by Chandrasekhar in a later addition (1964Db).

Of course the existence of an absolute maximum for a given
equation of state has the consequences pointed out by Oppenheimer
and Volkoff (1939). No stable configuration is possible for
M > M ax- A star having a greater mass must lose part of it by

some mechanism or collapse towards the Schwarzchild singularity.

VII. Comparison with Previous Work

First equation of state: The curve of M vs. t, does not agree
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(e.g. Oppenheimer and Volkoff 1939;Saakyan 1963)
with any published works [ , but Saakyan's (1962) comments seem to
indicate that he is aware that two relative maxima must exist in

this case also. Slight differences were found between the masses
Oppenheimer and Volkoff (1939)

and radii of and ours. Our value for the mass for ty = =
Oppenheimer and Volkoff (1939)
does not agree with ( , but seems to be very close to the
(1963)

value given in Saakyan. Note there cannot be any static approach
to infinite density since maximum occurs before relative maximum.
(see Zel'dovich 1959.)

Second equation of state: We confirm the results of Saakyan (1963)
but num@erical comparison could not be made, since Saakyan gave
no table. Certain discrepancies exist between Cameron's(1959) results
and ours, including one (for Pe = 3x1014 c.g.s.) in a region where
Saakyan says his and Cameron's were identical. Note that Saakyan
does not include one of Cameron's points in his graéh} viz.
P = 2x101% c.g.s. (t_ = 1.258).

A Table is appended giving R, M, and My (see below) for each

model and for each value of to .

VIII. Binding Energies

We have also calculated the quantity

E )
t(8) = | Hor (1= 22] %

where n is given by Edn.(6), for all the models except the infinite
density ones. The column My in the Table gives the values of uy(R)

in solar mass units.
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My is simply the total rest mass of the baryons composing the
star. If My - M is positive, we have binding, and conversely. The
Table shows that, roughly speaking, for tO somewhat past the first

maximum, the configurations are unbound.
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Figure Caption
Figure 1,
1) First Equation of State, Eqgn.(10)
2) Second Equation of State, Egn.(11)
3) Third Equation of State, Eqns.(19-21) (&

4) Fourth Equation of State, Egn.(24) (y =

3)

1)
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